CNN solutions for Pixel-Level ID

Aaron Higuera (UH, US)

Piotr Płoński (WUT, PL)

Aidan Reynolds (Oxford, UK)

Andrea Scarpelli (APC, France)

Daniel Smith (BU, US)

Dorota Stefan (CERN/NCBJ, CH/PL)

Robert Sulej (FNAL/NCBJ, CH/PL/US...)

Leigh Whitehead (CERN, CH)

Support on Tensorflow from Lynn Garen and LArSoft team

Outline

- what we are doing
- how, and what could be gained from common tools
- path forward

Pixel-level activity classification: basic idea

- Identify low-level features, independent from long range / full event context
 - EM-like / track-like discrimination
 - Michel electron activity identification
 - Vertex identification & classification (interaction / decay ID, gamma conversion, ...)
- Support standard reconstruction or additional input to higher level ML
- Several direct applications to physics & calibration
- Use raw ADC: no hit-related inefficiencies

Pixel-level activity classification: low level features

- ...independent from long range / full event context
 - limit the patch rage to the minimum: avoid effects of incorrect sim of inetactions
 - there is still ionization shape (somewhat handled with drift downsampling)
 - → accurate detector sim (it was for LArIAT, may not be that easy for 3x1x1)
 - → or explore more GAN, VAE, ...
 - noise is also a factor, however easier to simulate or take from data

EM/track in ProtoDUNE: CNN combined with reconstruction

EM/track in ProtoDUNE: CNN combined with reconstruction

Hadronic component

EM component

Hadronic component

EM/track in LArIAT: test on real data

EM/track in neutrino events

7000 8000 fEdepEMhAtt_MC

Hadronic component

Hadronic component

dual-phase 3x1x1 prototype data is waiting

- models were already prepared for dual-phase MC
- need to do the work on data... this is the target, not MC
 - → do MC-data overlay for most realism of noise → physics week now
 - → investigate signal shape differences: back to GAN idea?

As for all high and low level pattern recognition cases:

→ need to control nuisance parameters and feature differences in MC/data

Michel electron selection: see more on DUNE physics week

Vertex location / classification

- decay / interation vertex ID used also for NDK work (Aaron)
- more vertex ID: <u>EM shower vertex (Leigh)</u>

Moving to technical issues...

- EM/track and Michel selection applied at all hit locations
 - single CNN model, improvements from architecture/trainning customization
 - production mode needs really fast calculation
 - few Michel examples, many EM/track per event
 - majority of "easy" cases, difficult are less frequent but most important to solve
- Vertex ID applied to points/hits in selected regions
 - 1-to-few training examples per event
- → speed: training, production
- → training set optimization
- → architecture optimization
- → data representation / generators

Usual workflow for CNN preparation

- graph needs only a simple I/O interface,
- straightforward to port to any framework
- one can mix even different backends: Caffe / TF can read the sam format

(Theano + our old, simple API could handle "sequential" graph, single output layer only)

- → description of CNN ideally suited for parallelization:
 - -- input / output data as a tensors
 - -- batch of input tensors processed in parallel with a single graph
- → calculations decomposed into a basic building blocks to profit from parallelization & vectorization
 - → TF and Keras toolkits provide API to handle complex graphs in a few lines, no need to see all details
- → not for "if-else" heavy solutions

each input-output can be calculated in parallel to others

operations inside graph can run in parallel

to every element in tensor)

CPU/GPU can apply simple math instructions to multiple operands

Can describe every custom detail with TF:

...but usually use Keras as a high level API for TF:

```
main input = Input(shape=(img rows, img cols, 1),
                   name='main input')
x = Conv2D(nb filters1, (nb conv1, nb conv1),
           padding='valid', data format='channels last',
           activation=convactfn1) (main input)
x = Dropout(drop1)(x)
x = Flatten()(x)
x = Dense(densesize1, activation=actfn1)(x)
x = Dropout(drop2)(x)
x = Dense(densesize2, activation=actfn2)(x)
x = Dropout(drop2)(x)
em trk none = Dense(3, activation='softmax,,
                    name='em trk none netout')(x)
michel = Dense(1, activation='sigmoid',
               name='michel netout')(x)
sgd = SGD(lr=0.01, decay=1e-4, momentum=0.9, nesterov=True)
model = Model(inputs=[main input],
              outputs=[em trk none, michel])
model.compile(optimizer=sqd,
     loss={'em trk none netout': 'categorical crossentropy',
           'michel netout': 'mean squared error'},
     loss weights={'em trk none netout': 0.1,
                   'michel netout': 1.})
```

C++ API for TF allows building graphs on the fly, but what we really need is **loading graphs worked out in**Python: this is available now in UPS.

Performance with adjusted architecture

Running on the grid

- old code: almost no parallelization, little vectorization
- Tensorflow extremely flexible parallelization, code optimized, but: still cannot use full vectorization (no AVX on some grid CPUs)
- need convenient mechanism to select code that fits hardware: old CPU / GPU / KNL / ...
- parallelization / vectorization may be very dependent on backend: target also Caffe / TF selection

On a ProtoDUNE full event: 6 APA's, beam event + ~60-70 cosmic tracks

TimeTracker printout (sec)	Avg	TimeTracker printout (sec)	Avg
Full event	1029.31	Full event	486.511
source:RootInput(read)	0.00172957	source:RootInput(read)	0.00148615
reco:rns:RandomNumberSaver	0.000820898	reco:rns:RandomNumberSaver	0.000784336
reco:caldata:DataPrepModule	7.14426	reco:caldata:DataPrepModule	7.04595
reco:gaushit:GausHitFinder	65.1564	reco:gaushit:GausHitFinder	65.6555
reco:hitfd:HitFinder35t	107.047	reco:hitfd:HitFinder35t	115.82
reco:linecluster:LineCluster	1.5267	reco:linecluster:LineCluster	1.75606
reco:emtrkmichelid:EmTrackMichelId	606.107	reco:emtrkmichelid:EmTrackMichelId	50.716
reco:pmtrack:PMAlgTrackMaker (beam+cosmics)	152.281	reco:pmtrack:PMAlgTrackMaker	152.856
reco:pandora:StandardPandora (only cosmics)	72.9939	reco:pandora:StandardPandora	76.3032
reco:TriggerResults:TriggerResultInserter	0.000111717	reco:TriggerResults:TriggerResultInserter	0.000106771
end_path:out1:RootOutput	2.9803e-05	end_path:out1:RootOutput	4.4151e-05
end_path:out1:RootOutput(write)	17.0451	<pre>end_path:out1:RootOutput(write)</pre>	16.3541
MemoryTracker summary (base-10 MB units used)		MemoryTracker summary (base-10 MB units used)	
Peak virtual memory usage (VmPeak) : 3884.21 MB Peak resident set size usage (VmHWM): 2863.01 MB		Peak virtual memory usage (VmPeak) : 4463.87 MB Peak resident set size usage (VmHWM): 3052.71 MB	

- → CNN runs 10x faster, no longer bottleneck, but it is not the only thing in the reco chain
- → parallelization has an overhead, likely allocating 2 or 4 CPU on the fermigrid should be optimal
- → the larger batch of inputs, the faster processing, ...and more memory needed
- → optimally, feature maps should be done once / event, not redone for each patch...

Upcoming work: more brain power on training data handling

- 1. EM / track / Michel: simple workflow enough
 - → ADC / PDG maps in ROOT histograms, then "patch" preparation for the training
 - → training set composition "optimized" manually (otherwise heavy weapon for a simple task)
 - → straigt-forward data augmentation (flips only)
- **2. More towards CNN/reco combined: disambiguation and segmentation**, work waiting for the Ph.D. student
 - → ADC / TrackID maps in ROOT histograms, will need multiple resolution "glimps"
 - → training batches **should** be generated o the fly
 - → likely will go for automated opimization of training set
- 3. primary vertex location: main focus now due to the DUNE TDR
 - \rightarrow ADC maps in ROOT histograms, 1 byte / pixel, ~150-180 kB / DUNE LBL ν event ready
 - → multiple resolution "glimps", recurrent CNN: batches **MUST** be generated o the fly ready
 - → automated opimization of training batches ongoing
 - → NOTE non-trivial issues with the wire wrapping and "global image" done in a hacky way

Wrapped wires can be very annoying...

Training data representation

For practical work:

- → need >1M events in memory, can swap from disk occasionally
- → need fast unpacking for the batch generation purposes
- → no strong downsampling (not below the detector effective resolution)

Items to try today?

→ load Caffe model with TF/Keras, ...or vice versa and include Caffe backend in EM/track inference

→ modify CVN for 2-view dual-phase neutrinos

→ look what event formats others are using